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ABSTRACT

The goal of the Smart* project is to optimize home energy con-
sumption. As part of the project, we have designed and deployed
a “live” system that continuously gathers a wide variety of envi-
ronmental and operational data in three real homes. In contrast to
prior work, our focus has been on sensing depth, i.e., collecting as
much data as possible from each home, rather than breadth, i.e.,
collecting data from as many homes as possible. Our data captures
many important aspects of the home environment, including aver-
age household electricity usage every second, as well as usage at
every circuit and nearly every plug load, electricity generation data
from on-site solar panels and wind turbines, outdoor weather data,
temperature and humidity data in indoor rooms, and, finally, data
for a range of important binary events, e.g., at wall switches, the
HVAC system, doors, and from motion sensors. We also have elec-
tricity usage data every minute from 400 anonymous homes. This
data corpus has served as the foundation for much of our recent
research. In this paper, we describe our data sets as well as basic
software tools we have developed to facilitate their collection. We
are releasing both the data and tools publicly to the research com-
munity to foster future research on designing sustainable homes.

1. INTRODUCTION

The rise in energy prices over the last decade combined with
growing fears over the impact of climate change has motivated
recent research in the design of sustainable buildings and homes.
Much of this research, including our own work in the Smart* (pro-
nounced smart-star) project, is grounded in data gathered from the
real world. As sensor networking researchers are well aware, de-
ploying long-lived sensing systems poses a significant challenge. In
particular, recent work highlights the unique and often overlooked
challenges of designing in situ residential sensing deployments,
which must blend into the home without compromising household
aesthetics [4]. As a result, in many cases, researchers collect only
the data they require for a specific project using a temporary, short-
lived deployment. A disadvantage of the approach is that it may
fail to capture aspects of the home that only reveal themselves over
long periods. Further, researchers may be less likely to invest in

Permission to make digital or hard copies of portions of this work for per-
sonal or classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ACM SustKDD’12, August 12, 2012, Beijing, China.

Copyright 2012 ACM 978-1-4503-1558-6/12/08 ...$10.00.

scaling up project-specific deployments, since collecting data may
have little value after a project’s conclusion.

In our own research over the past three years, we have taken
a different approach. Rather than deploying sensors and gather-
ing data with a specific purpose in mind, we have instead concen-
trated on deploying a long-lived system for gathering a wide array
of home data. This data has served as the foundation for many
research projects [2, 7, 11, 12, 16, 17]. While our prior work sum-
marizes aspects of our system and the data it collects, we have not
yet provided a detailed description of either. Further, since we con-
tinuously work to improve our system’s operation and data fidelity,
including upgrading to better sensors, deploying additional sensors,
and designing more efficient ways to query sensors, the descrip-
tions that appear in much of our prior work is out-of-date. Since
we have received an increasing number of requests for data, rather
than continue to respond to each request individually, we have de-
cided to create and maintain a public data repository. The lack of
detailed public data sets has recently been cited as an impediment
to academic research [10]. Our repository will include the data sets
from this paper, as well as open-source Linux-based software we
have developed for communicating with commercial power meters.

This paper’s goal is to provide a detailed overview of our data,
outline our choice of sensors and their capabilities, and describe
the basic software tools we have developed to gather data. We
also discuss some of the experiences and pitfalls in developing our
system over the past three years. Since our deployment uses only
commercially-available hardware, other researchers should be able
to replicate our deployment with relative ease. The release of our
data and software tools is inspired, in part, by the the Reference
Energy Disaggregation Data Set (REDD), which is being widely
used by researchers to validate and compare new disaggregation
algorithms [9]. While our data may also prove useful for disaggre-
gation research, both our goals and our data differ from REDD in
important ways, as described below.
Heterogeneity. We collect data from a variety of different sources,
including, but not limited to, electricity usage at the mains panel,
each circuit, and nearly every plug load. We believe that correlat-
ing data from multiple sensors will prove useful for researchers. To
this end, we also gather data from multiple weather, motion, door,
wall switch, and thermostat sensors, as well as electricity genera-
tion data from solar panels and wind turbines. As one example of
using multiple sensors, in recent work, we analyzed a refrigerator
and used both its internal temperature and its average real power
each second to quantify the cooling rate of the compressor [2].
Scalability. Our system’s aim is to collect high-resolution data
at scale. For electrical loads, we gather average real power each
second for entire homes and each circuit, and average real power
from almost every individual plug load every few seconds. We



also record on/off/dim events from nearly every wall switch in one
home. Additionally, our sensors at the mains panel record apparent
power for the home and each circuit, as well as the voltage and fre-
quency on both phases of the home’s split-leg input power. We be-
lieve collecting data from every load will enable new research. For
instance, we are not aware of any prior work on non-intrusive load
monitoring (NILM) that focuses on large scale scenarios—greater
than 100 loads—with many relatively low-power loads, e.g., less
than 50 watts (W), which is a common characteristic of modern
homes. The lack of research may be due, in part, to the difficulty in
providing ground truth data across many loads. As prior research
on NILM has shown, reactive power is often useful in disaggrega-
tion [3]. While past work has asserted that distributed sensing at
every load is prohibitively expensive [8], our deployment demon-
strates that the cost is well within the bounds of a modest research
budget, e.g., a few thousand U.S. dollars.

Redundancy. Instrumenting the same loads multiple times at dif-
ferent levels of the electrical wiring tree—the entire home, each
circuit, and each wall switch and outlet—reveals important infor-
mation about the relative accuracy of the sensors. In our own ex-
perience, we have found that sensors may exhibit errors that are
difficult to detect, but have a significant impact on the conclusions
drawn from fine-grained data. For example, we discovered that the
widely-used Energy Detective (TED) power meter [18] for mon-
itoring a home’s electricity at the mains panel sometimes experi-
ences communication problems while sending data over the power-
line. The meter uses an unreliable X10-like protocol that is highly
sensitive to noise on the powerline. While the display blinks or-
ange when the problems occur, the data masks the problem by al-
ways recording the last power reading as the current power reading
if it does not receive a new reading. We only discovered the er-
rors when correlating our readings with data from meters at outlets
and wall switches. As we indicate in prior work [7], the hidden
communication problems complicate disaggregation.

2. SMART#* PROJECT OVERVIEW

As part of the Smart* project, we have built a data collection in-
frastructure that records data from a variety of sensors deployed in
real homes. Our infrastructure supports both pulling data by query-
ing individual sensors, and pushing data from sensors to a gateway
server, which runs our software tools. The infrastructure has sup-
port for tracking (i) average real and apparent power every second
for the home and each circuit at the mains panel, (ii) real power
usage every few seconds from nearly all of the home’s plug loads,
(iii) on-off-dim events at nearly all of the home’s wall switches, (iv)
average electricity generation from solar panels and micro wind tur-
bines every five seconds, (v) a variety of events related to energy
consumption, including motion sensing, door/trigger sensing, and
thermostat sensors, and (vi) environmental data every minute via
weather sensors both inside and outside the home.

Our data collection infrastructure provides a web interface to
configure devices in each home and control the data gathering pro-
cess. Importantly, it is also designed as a “live" system that oper-
ates continuously. Thus, we expect to release periodic snapshots of
our data in the future, starting in August 2012. We are targeting
releases every 6 months thereafter. The long-term nature of the de-
ployment should provide researchers a window into how electricity
usage changes season-to-season and year-to-year.

3. SMART* OPEN DATA SETS

Our initial release consists of two data sets: (i) a high-resolution
data set from three homes and (ii) a lower resolution data set from

400 homes. We refer to the former as the UMass Smart* Home
Data Set and the latter as the UMass Smart* Microgrid Data Set,
and request that researchers cite these names in their work.

3.1 Smart* Home Dataset

While other researchers have targeted breadth in collecting data,
e.g., gathering household electricity from many more homes [1,
9], our deployments target depth by gathering a multitude of data
from many sensors in three real homes. We first briefly describe
each home before describing the various types of data we collect.
Since each home includes a different mix of sensors, we also out-
line which sensors are deployed in which homes. While we do
not reveal the exact location of the homes, they are all in Western
Massachusetts.

3.1.1 Deployment

Home A is a two-story, 1700 square foot home with three full-time
occupants. The home has a total of eight rooms including its base-
ment. The main level has a living room, bedroom, kitchen, and
bathroom, while the second story has two bedrooms and a bath-
room. The home does not have central air conditioning (A/C). In
the summer, the occupants use three window A/C units: one in the
living room and one in each of the upstairs bedrooms. The home’s
heating system uses natural gas. Other major appliances include
an electric dryer and washing machine, heat recovery ventilation
(HRV) unit, dishwasher, refrigerator, and freezer. The home has
35 wall switches, which primarily control room and closet light-
ing; switches also control an exhaust fan in each bathroom and the
garbage disposal. The electrical panel has 26 individual circuits.

Home A is our most deeply instrumented home. Using sensors
installed in the mains panel, we collect electricity data every sec-
ond for the entire home, as well as each circuit. We have replaced
30 of the home’s 35 wall switches with units that transmit on-off-
dim events for the switches over the powerline to a gateway server.
We were unable to replace the remaining five switches for various
reasons: three basement switches do not have neutral wires in the
switch box, the garbage disposal’s power exceeded the rating of the
programmatic switches, and an exact replacement for one kitchen
switch is not available. We are able to derive the power usage from
the uninstrumented switches via the circuit data: the basements
switches are on dedicated circuits, the garbage disposal is on a cir-
cuit with only the dishwasher (which has a dramatically different
power profile), and the kitchen switch is on a circuit dedicated to
kitchen lights, which has only one other already-instrumeted load.
The home’s electrical wiring also aids our data collection. Each
circuit is dedicated to either lighting (monitored at wall switches),
outlets (monitored by plug meters), or individual large appliances
(monitored at the mains panel). Since our wall switches report on-
off-dim events, rather than raw power, having the lighting on sepa-
rate circuits makes it simple to correlate lighting events with power
usage using the circuit data.

In addition to monitoring characteristics of electricity usage,
Home A also includes a variety of other sensors. The home’s heat-
ing system has three zones controlled by three thermostats—-one
in the living room and one in each upstairs bedroom. We have
installed thermostats that transmit information about the heating
system to our gateway server, including when the furnace turns
on or off, when the setpoint rises or falls, e.g., from an occupant
changing it manually, and when the temperature changes. We have
also deployed motion sensors in all eight rooms that signal when
motion is detected and when it is no longer detected, i.e., if two
minutes of idle time occurs from the last motion. We have also de-
ployed door sensors that report open and close events. Our initial



Figure 1: CT installation at the mains panel in Home A (a);
solar panel and micro wind turbines at Home C (b).

door sensor deployment is small: we have attached two sensors to
the refrigerator (for the refrigerator and freezer compartments) and
one door sensor to the basement freezer. Finally, we have deployed
a weather station that collects both outdoor—temperature, humid-
ity, pressure, wind speed, rainfall, solar intensity, etc.—and indoor
weather statistics. We have deployed temperature/humidity sensors
in all eight rooms, as well as inside the refrigerator.

Home B is similar to Home A in size, at roughly 1700 square feet
across two stories with eight rooms and four full-time occupants.
The primary level includes a living room, kitchen, and dining room,
while the second story includes two bedrooms. The home also has
a finished basement and two bathrooms. Unlike Home A, Home
B has central A/C, in addition to a gas-powered heating system.
Similar to Home A, we have installed sensors in Home B’s mains
panel, which records electricity usage every second for the entire
home and for all 21 circuits. Home B also has a weather station for
gathering outdoor weather statistics, although we do not currently
monitor indoor weather. Home B’s heating and cooling system uses
a single, centrally located thermostat. Rather than deploy the same
thermostat as in Home A, we have deployed the recently released
NEST thermostat in the home. The NEST makes the same basic
information available for logging as Home A’s thermostat, but uses
WiFi for communication (rather than a custom 900Mhz wireless
protocol) and includes logic for learning behavioral patterns from
a built-in motion sensor and autonomously altering the setpoint.
Home C is much larger than Home’s A and B, at roughly 3500
square feet across two stories. Due to Home C’s size, it requires
two separate electrical panels with a total of 60 circuits. We cur-
rently monitor electricity usage for the entire home, as well as 21 of
its circuits, in addition to outdoor weather statistics via a weather
station. Unlike Home’s A and B, Home C has both solar panels
and (until recently) two micro wind turbines. We are currently re-
deploying the turbines to a new location. We record current from
the three solar panels and two micro wind turbines, at five second
intervals (averaged from samples every second), along with the bat-
tery voltage. The generation uses micro-inverters at each panel to
record individual current, convert the power to AC, synchronize it
with the grid, and feed it into the home’s grid supply. The home
net meters its power onto the grid via an electrical meter that re-

[ Name | Timestamp | Data Fields I
Circuit ID Unix Real Power (W), Apparent Power (VA)
Phase ID Unix Frequency (Hz), Voltage (V)

Panel ID Unix Current (Amps)
Turbine ID Unix Real Power (W)
Battery Unix Voltage (V)

Table 1: We collect electricity usage every second at the mains
panel and electricity generation data every five seconds from
solar panels and wind turbines. Each row represents the row
format for time-series data in a distinct data file.

Name Timestamp Data Fields
Meter ID Unix Real Power (W), Circuit, Room
Switch ID Unix MaxPower (W), Dim%, Circuit, Room
Thermostat ID Unix On/Off (110), Temp (F), Setpoint (F)
Motion ID Unix Yes/No (110), Room
Door ID Unix Open/Close (1 10)

Table 2: We collect data from plug meters, wall switches, mo-
tion sensors, door sensors, and thermostats. Each row repre-
sents the row format for time-series data in a distinct data file.

verses direction when the home’s generation exceeds its consump-
tion. The micro-inverters are designed to disengage power if grid
power goes out, to prevent backfeeding onto dead power lines.

3.1.2 Data Types

Below, we provide detailed information about our sensors and
the data they collect. We use a simple nomenclature for sensor
IDs, that incorporates their location (by room and, if applicable, by
circuit) and, in some cases, their functionality. For example, we
pre-pend a unique number to the name of each circuit we monitor.
We then pre-pend the appropriate circuit number to each individ-
ual load we monitor (at wall switches and plugs) to indicate which
circuit the load is attached to. Similarly, we use standard names
for rooms within each home, and include the name in a data item’s
ID. Tables 1 and 2 summarize the data we collect. Each row in the
tables represents a distinct file storing time-series data. We expect
to release all data as a set of simple space-delimited text files (one
per day) storing the time-series with Unix (UTC) timestamps.
Electricity at the Mains Panel. Numerous commercial power me-
ters are available, such as the TED 5000, BrulTech ECM-1240,
Current Cost Envi, and eGauge. These meters sense electricity us-
age using current transducers (CTs) wrapped around each leg of a
home’s split-phase input power. Our system is compatible with any
of these meters, which generally make the data available via the
web. Since these meters typically have slots for a limited number
of CTs, e.g., the TED supports six CTs per gateway, we use mul-
tiple units in each home’s panel to cover as many circuits as pos-
sible. Figure 1(a) shows Home A’s installation, with three units in
the bottom of the panel. We use 100A CTs for each leg of power,
and 20A CTs for each circuit, matching the breaker ratings. The
CTs are rated to have less than 1% error for current and voltage.
Redundant monitoring of both the home’s aggregate data and every
circuit allows us to determine the relative error of the sensors, by
comparing the aggregate usage with the sum of all circuits’ usage.
Figure 2 demonstrates that over 90% of the per-second readings for
the entire home and the sum of the circuits is within 2% of each
other, while over 99% of readings are within 4% of each other.

For transmitting data to our gateway server, our unit uses the
HomePlug Ethernet-over-Powerline protocol, which is designed for
high-bandwidth applications like HDTV. For each CT, we record
both real and apparent power. Additionally, the unit is able to
record voltage and frequency every second on both phases. On-
board flash in each unit stores the last ten minutes of per-second
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Figure 2: Error between Home A’s aggregate electricity data
and the sum of all the individual circuits

data, requiring our system to only query the device once every
10 minutes. As mentioned above, we pre-pend to each circuit a
unique number that we use across devices. For example, the elec-
tric dryer’s dedicated circuit in Home A is “02:Dryer”. The first two
rows of Table 1 summarize the data we collect at the mains panel.
The first row’s data includes real and apparent power for all circuits
(in Home’s A and B) and the entire home. The second row’s data
includes frequency and voltage for both electrical phases.
Renewable Generation. Figure 1(b) shows our solar panel and
wind turbine deployment at Home C. As stated earlier, we recently
took down our wind turbines for relocation. We use a HOBOlink
data logger [5] to record the average current from the panels and
turbines every five seconds, as well as the attached battery’s volt-
age. Air-X manufactures our wind turbine, which rates its maxi-
mum power output as 400 watts in 28 mile per hour winds. The
last three rows of Table 1 describe the generation data. Similar
to the electricity usage data, we expect to release generation data
as simple space-delimited text files with each entry containing a
timestamp and the current or voltage over the last five seconds.
Electricity at Qutlets. Numerous commercial plug meters are now
available. We use two different meters in our deployment: the In-
steon iMeter Solo [6] and the Z-Wave Smart Energy Switch [20]
from Aeon Labs. The iMeter Solo uses the Insteon protocol to
transmit readings to our gateway server via an Insteon Powerline
Modem (PLM). The Insteon protocol simulcasts readings wire-
lessly and over the powerline. While the iMeter Solo’s data packets
are undocumented, the protocol’s simplicity allowed us to reverse
engineer it. One disadvantage of the Insteon protocol is its extreme
bandwidth limitations, which permits a maximum of one iMeter
Solo power query across all devices each second. In practice, since
we employ other Insteon sensors, we do not query iMeters at the
maximum rate; instead, we query an iMeter only if we detect that
power has changed on its circuit. The approach works well for sta-
ble loads that rarely change their power usage, e.g., digital clocks,
lamps, etc. We currently have 34 iMeter Solos in Home A.

iMeters are not appropriate for loads with highly variable power
usage, such as some electronic, e.g., TVs, computers, etc., or induc-
tive, e.g. A/Cs, refrigerators, vacuums, etc., loads. We use Z-Wave
wireless Smart Energy Switches to monitor power for these loads.
While Z-Wave is a proprietary protocol, the OpenZWave library for
Linux provides rudimentary APIs for many Z-Wave devices. Since
the project only provides libraries, device-specific code for gath-
ering data or controlling devices must be custom written. As we
discuss in the next section, we have written a simple driver for the
Smart Energy Switch to query the switches (specified in a configu-
ration file) in serial order for their power usage. We currently have
21 Z-Wave switches in Home A, which record real power from each
switch on average every 2.5 seconds.

Our system covers nearly all plug loads in Home A. However,
we currently do not monitor a few small loads, our measurement
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Figure 3: Power usage is a linear function of a light’s dim level.

equipment, or transient loads not permanently connected to fixed
outlets. The only significant loads we do not monitor individually
in Home A are wired to gas furnace. In particular, an exhaust fan
for the boiler and multiple recirculator pumps for the baseboard
heating system. As we discuss below, we are exploring how to
disaggregate these loads using data from Home A’s thermostats.
The first row of Table 2 shows the data format for the plug meters.
Wall Switch Events. In Home A, as discussed earlier, we have
replaced 30 of the 35 mechanical wall switches with Insteon-
enabled switches [6]. Specifically, we use Insteon SwitchLinc Re-
lays for non-dimmable lights and Insteon SwitchLinc Dimmers for
dimmable lights. The wall switches transmit discrete on/off/dim
events for each switch when physically pressed to the gateway via
the Insteon PLM. The dim level is reported as a percentage between
0 and 100, with 100% being fully on. As Figure 3 shows, lighting
power is a linear function of reported dim level.

Since lighting in Home A is on separate circuits from outlets
and other appliances, it is simple to correlate wall switch events
with power usage collected by circuit meters. However, if we ever
detect a change on a lighting circuit meter without having detected
a wall switch event, our gateway is also able to poll the switches
for their on-off-dim status. Importantly, the Insteon wall switches
look and behave like normal switches, so they are not obtrusive to
the homeowners. In Home A, the new switches look exactly like
the old switches, and have been in use for over a year. The second
row of Table 2 describes our wall switch data.

Thermostat Events. We use two different types of thermostats for
monitoring home heating and cooling systems. In Home A, we
use three Insteon-enabled Ventstar thermostats [6] that wirelessly
transmit data via the Insteon PLM. The thermostat sends messages
to our gateway server whenever someone manually changes the set-
point temperature, the temperature changes, or the furnace turns on
or off. The thermostat’s mode and setpoint is also configurable
from the gateway. Since the furnace turning on or off correlates
with the operation of the furnace’s hot water recirculator pumps,
we are optimistic that the furnace data will aid us in disaggregating
the furnace loads that we are unable to individually meter. In Home
B, we use the NEST thermostat, which has similar monitoring and
control functions as the Ventstar but is WiFi-enabled and capable of
autonomously controlling the setpoint based on occupancy patterns
it learns over time using a built-in motion sensor. The third row of
Table 2 describes our thermostat data.

Motion Events. We use Insteon Skylink motion sensors [6] to
monitor occupancy in six rooms of Home A. The motion sensors
send our gateway server information when (a) activity is detected
in a previously dormant room, or (b) activity has not been detected
for two minutes in a previously active room. We record the infor-
mation for each room, which includes a timestamp when motion is
detected (or not), as well as the new occupancy status of the room.
The fourth row of Table 2 describes our motion sensor data.

Door Events. We use Insteon TriggerLincs [6] to monitor when
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Figure 4: Power and temperature data demonstrating the
‘guardband’ behavior of a refrigerator. Data from [2].

doors open and close. As with the motion sensors, we record the
time of the opening and closing. Thus far, we have only deployed
door sensors on the kitchen refrigerator, its freezer compartment,
and the basement freezer. However, even this small amount of data
has proven useful, since we are able to track how often the freezer
and refrigerator open, which has a significant effect on the interior
temperature and the resulting compressor cycle. Further, opening
the door triggers an interior light, which we correlate with 120W
power spikes in the refrigerator and freezer’s circuit data. We plan
on deploying additional sensors at interior and exterior doors in the
near future. The fifth row of Table 2 describes our door sensor data.
Weather Station Data. Finally, we use an Oregon Scientific WMR
200A professional weather station [14] to monitor indoor and out-
door weather data. We deploy the weather station’s rain gauge,
anemometer, and temperature/humidity sensors on a pole mounted
in the rear of Homes A, B, and C. In Home A, we also use eight ad-
ditional temperature/humidity sensors to monitor the status of the
three rooms on the main level, the two upstairs bedrooms, the base-
ment, and the interior of the refrigerator. We record the average of
the temperature, humidity, wind, and rainfall metrics every minute.

3.2 Smart* Microgrid Data Set

In addition to our live dataset from the three homes we are mon-
itoring, we also plan to release a second data set from 400 homes,
which includes average real power usage for each home at one
minute granularity for an entire day. For privacy reasons, the data
source and the homes are kept anonymous. This data is well-suited
for emulating microgrids or examining the grid-scale effects of var-
ious optimizations, such as the use of energy storage [11]. We ex-
pect to include data for longer periods in a future release.

3.3 Potential Uses

Below, we outline past and potential future uses of our data set.
Cost Optimization. SmartCharge uses energy storage to cut elec-
tric bills when using market-based electricity pricing plans [11]. In
this work, we used Home A’s aggregate electricity data to quantify
the potential for savings using today’s market-based pricing plans
and batteries. We also developed a machine learning-based model
to predict aggregate consumption for Home A using multiple fea-
tures, including the weather data we collect. Finally, we used our
microgrid data to quantify the effect of energy storage at grid-scale.
Demand Flattening. SmartCap flattens electricity demand by
shifting electricity usage for background loads without impacting
their objective, e.g., to maintain an environmental setpoint or com-
plete a task [2]. We designed a Least Slack First (LSF) scheduling
policy, which schedules loads in ascending order of their remain-
ing slack—the time which they may remain off without affecting
their objective. We used our home electricity data, plug load and
circuit data for eight background loads, and our temperature and
humidity data from our weather sensors to evaluate LSF’s potential

for demand flattening. For example, Figure 4 is a graph from our
work [2] that shows how the refrigerator’s interior temperature cor-
relates with its power usage. In this case, the work exploited slack
in the compressor cycle, e.g., when the temperature was between its
maximum and minimum point, to advance or defer the compressor.
Load Monitoring. Home automation (HA) protocols, such as In-
steon, are designed to provide low-cost remote actuation capabil-
ities for loads. Unfortunately, their low bandwidth has precluded
their use in load monitoring. We design AutoMeter to disaggregate
a home’s electricity usage each second using low resolution data
from Insteon wall switch events and iMeter plug loads [7]. The
approach endows low-cost HA systems originally designed for ac-
tuation with new sophisticated load monitoring capabilities.
Renewable Prediction. We have designed multiple models for
predicting future renewable generation using weather forecasts
from the National Weather Service [17, 16, 19], and used them to
improve the performance of a variety of systems. Our first model
used solar radiation and wind speed from our weather station to
predict solar and wind generation, respectively. We then developed
more sophisticated models using machine learning techniques that
included a variety of other forecast features.

Privacy. Finally, we have studied how our homes’ aggregate elec-
tricity leaks information about the activities of its occupants, and
defined privacy-preserving protocols that enable utilities to bill for
usage without revealing occupant behavior [12].

NILM. Similar to REDD, our data might also be useful in devel-
oping and evaluating new disaggregation algorithms for electricity
data. For example, Figure 5 shows a histogram of the number of
per-second readings that fall within a concurrent power event across
all circuits in Home A on a single day. One challenge with NILM is
disaggregating loads when they simultaneously change power. In
this case, we define an event as a change in power greater than 10W,
with an associated margin M of either O seconds or 3 seconds that
determines the duration (or ‘length’) of an event. If a change oc-
curs at time 7" and the margin is M seconds, then any other change
in power is concurrent if it occurs between T' + M and T — M.
Figure 5 shows that the vast majority of per-second readings, e.g.,
z = 0 or x = 1, are not part of concurrent events (with a threshold
of 10W and a margin of 3 seconds).

While the number of readings that fall within concurrent events
(x > 2) is approximately 10,000 for M = 3, most of these are
caused by a small number of highly variable circuits. If we remove
the HRV circuit, the number of readings falls by more than 10x
to approximately 900, while removing the furnace and living room
outlets results in an additional 3x reduction to roughly 300 read-
ings. This data suggests that either a few strategically placed power
meters can simplify NILM, or that pure NILM algorithms might
benefit from focusing on these few highly variable devices. Addi-
tionally, we can demonstrate the benefits of using higher-precision
sensors by decreasing the margin — for example, by removing only
the HRV circuit and setting M = 1 (as shown in Figure 5), we can
achieve under 200 concurrent readings.

4. SMART* SOFTWARE TOOLS

Since our goal is to collect data in support of research in sustain-
able buildings, rather than researching how to build new types of
sensor systems, we use only commodity, off-the-shelf equipment
in our deployment. As a result, researchers are able to replicate
our deployment without building custom hardware. We encourage
new deployments and data releases, since it is infeasible for us to
deeply instrument a large number of houses on our own. In this
section, we provide a high-level overview of our system, as well
as describe some Linux-based software tools we have developed to
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Figure 5: Histogram of concurrent power events in Home A.

interact with sensors. We include the software tools as part of our
public release to facilitate researchers in replicating our system.
System Overview. Smart* employs a simple architecture centered
around a gateway server in each home. We use the embedded
DreamPlug server as our gateway. The DreamPlug has a low, in-
conspicuous profile, runs a standard Linux distribution, and has nu-
merous USB ports for sensors: the Insteon PLM, Z-Wave Z-Stick2
receiver, and WMR 200A Weather Station console all connect via
USB ports. Our system is device agnostic: it supports the sensors
we currently use, as well as those we have used in the past, e.g., the
TED, DavisPro, Tweet-a-Watt. We plan to support more devices
as necessary. In many cases, interacting with sensors is straight-
forward. Power meters that install in the electrical panel generally
make the data available via the web, and do not require special-
ized software. The Linux software wview supports a wide variety
of weather stations, including the Oregon Scientific and DavisPro
models. Unfortunately, Insteon and Z-Wave do not have mature
open-source software tools available. Below, we describe the tools
we have developed to interact with these sensors. In the future, we
may also release our data collection engine, which uses these basic
tools as building blocks to collect our data in real-time.

Insteon Software Tools. Communication with Insteon devices
is accomplished through the use of an Insteon PLM, which con-
nects both to the Insteon network over the powerline and to our
gateway over a USB serial connection. The most robust ex-
isting toolset for communicating with the PLM in Linux is the
open-source plmtools project [15], which listens on the PLM’s
USB serial connection to send and receive binary data from
the Insteon network. Our fork of plmtools, which we call
plmtools-imeter, is updated and extended in several ways to
make it more useful for large-scale sensing deployments. Our most
significant addition is support for the Insteon iMeter Solo. The
iMeter Solo’s commercial software communicates only with pro-
prietary, Windows-only software using an undocumented protocol,
which we have reverse engineered for plmtools—imeter.

Our software turns the iMeter Solo into an easily scriptable me-
ter which can be queried using a simple, one line Linux command.
We have also extended plmtools in several other ways, such as
adding more robust error handling (which is important given the
potential for powerline packet collisions), human-readable descrip-
tions of observed packets in real-time, and the decoupling of packet
deliveries from receipts. The latter enhancement allows, for exam-
ple, a single process to receive and process all incoming packets,
while other processes asynchronously dispatch commands over the
power line. This is useful when simultaneously listening for inter-
rupts (such as from Insteon wall switches or motion sensors) and
dispatching commands (such as iMeter Solo queries).

Z-Wave Software Tools. Communication with Z-Wave devices
occurs wirelessly using a small USB receiver. Existing Z-Wave
support is similar to the iMeter Solo, in that its official software is
proprietary. The OpenZWave project [13] is a new project work-

ing towards open-source support for Z-Wave devices, which cur-
rently includes rudimentary documentation and examples. To use
our Z-Wave Smart Energy Switch, we have written a small set of
programs to mask the details of OpenZWave and directly query the
meter. The program enables us to use Z-Wave meters as drop-in re-
placements for iMeters, when we require high bandwidth for rapid
data collection. Our Z-Wave daemon simply queries every Z-Wave
meter in range in round-robin fashion with a user-defined delay be-
tween queries, which determines the data collection rate.

5.  CONCLUSION AND FUTURE PLANS

This paper describes two datasets—the UMass Smart* Home
Data Set and the Smart* Microgrid Data Set—-we are releasing
as part of the Smart* project to foster research in designing sus-
tainable homes. We expect to issue periodic releases of the Smart*
Home data every six months. Finally, we are continuing to im-
prove our existing deployments, and plan to add additional sensors
and data products to future releases.'
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